Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Blood Research ; : 10-17, 2018.
Article in English | WPRIM | ID: wpr-713634

ABSTRACT

BACKGROUND: Hereditary spherocytosis (HS) is a chronic hemolytic anemia characterized by microspherocytes in the peripheral blood and increased erythrocyte osmotic fragility (EOF). This study evaluated the cryohemolysis test (CHT); initial hemolysis (IH); immediate and incubated hemolysis percentage in 5.5 g/L NaCl (H5.5); mean corpuscular hemoglobin concentration (MCHC); red blood cell distribution width (RDW); and Hb/MCHC, Hb/RDW, and MCHC/RDW ratios for the diagnosis of HS. METHODS: Data from 13 patients with HS were evaluated at the Instituto de Bioquímica Aplicada and compared with data from 14 unaffected individuals and 11 patients with anemia due to another etiology. Total blood and reticulocyte counts, CHT, and immediate and incubated EOF were performed in all subjects; sensitivity, specificity, efficiency, and Youden index (YI) were calculated. RESULTS: Eight patients with HS had MCHC ≥345 g/L, 10 had RDW ≥14.5%, 12 had IH >5.0 g/L, 11 had immediate H5.5 ≥5%, and 13 had incubated H5.5 ≥50% (the cut-off value to consider HS). The efficiency and YI were: immediate H5.5 (0.94–0.85), incubated H5.5 (0.89–0.82), IH (0.89–0.78), MCHC (0.87–0.62), CHT (0.84–0.54), and Hb/MCHC (0.71–0.56), respectively. The calculated ratios could distinguish subjects with HS from unaffected individuals (P 0.05). CONCLUSION: Although the CHT and supplementary hematimetric indexes were useful to differentiate individuals with SH from healthy controls, they cannot distinguish from anemias of other etiology. CHT and MCHC, in addition to EOF, are recommended for diagnosing HS patients because of their low cost and efficiency.


Subject(s)
Humans , Anemia , Anemia, Hemolytic , Diagnosis , Erythrocyte Indices , Erythrocytes , Hemolysis , Osmotic Fragility , Reticulocyte Count , Sensitivity and Specificity
2.
Rev. bras. hematol. hemoter ; 39(2): 115-121, Apr.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-898913

ABSTRACT

ABSTRACT Background: Oxidative stress may aggravate symptoms of hemolytic anemias such as beta-thalassemia. FoxO3 activation results in resistance to oxidative stress in fibroblasts and neuronal cell cultures. Objective: The purpose of this research was to study FoxO3 gene expression and oxidative status in beta-thalassemia minor individuals. Methods: Sixty-three subjects (42 apparently healthy individuals and 21 with beta-thalassemia minor) were analyzed at the Universidad Nacional de Tucumán, Argentina, between September 2013 and June 2014. A complete blood count, hemoglobin electrophoresis in alkaline pH and hemoglobin A2 levels were quantified. Moreover, thiobarbituric acid reactive species, erythrocyte catalase activity and iron status were evaluated. Beta-thalassemia mutations were determined by real-time polymerase chain reaction. FoxO3 gene expression was investigated by real-time reverse transcription-polymerase chain reaction using mononuclear cells from peripheral blood. Results: Subjects were grouped as children (≤12 years), and adult women and men. The analysis of erythrocyte catalase activity/hemoglobin ratio revealed a significant difference (p-value <0.05) between healthy and beta-thalassemia minor adults, but no significant difference was observed in the thiobarbituric acid reactive species levels and FoxO3 gene expression (p-value >0.05). Thiobarbituric acid reactive species and the erythrocyte catalase activity/hemoglobin ratio were not significantly different on comparing the type of beta-thalassemia mutation (β0 or β+) present in carriers. Conclusions: The lack of systemic oxidative imbalance demonstrated by thiobarbituric acid reactive species is correlated to the observation of normal FoxO3 gene expression in mononuclear cells of peripheral blood. However, an imbalanced antioxidant state was shown by the erythrocyte catalase activity/hemoglobin ratio in beta-thalassemia minor carriers. It would be necessary to study FoxO3 gene expression in reticulocytes to elucidate the role of FoxO3 in this pathology.


Subject(s)
Humans , Male , Female , Catalase , Thiobarbituric Acid Reactive Substances , beta-Thalassemia/therapy , Oxidative Stress , Erythrocytes , Forkhead Box Protein O3
SELECTION OF CITATIONS
SEARCH DETAIL